Email updates

Keep up to date with the latest news and content from European Journal of Medical Research and BioMed Central.

Open Access Research

Cytokine/chemokine patterns connect host and viral characteristics with clinics during chronic hepatitis C

Antonios Katsounas12*, Martin Trippler1, Shyam Kottilil3, Richard A Lempicki2, Guido Gerken1 and Joerg F Schlaak1

Author Affiliations

1 Department of Gastroenterology and Hepatology, University Hospital of Essen, Hufelandstr. 55, 45122, Essen, Germany

2 Laboratory of Immunopathogenesis and Bioinformatics, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, 21702, USA

3 Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA

For all author emails, please log on.

European Journal of Medical Research 2012, 17:9  doi:10.1186/2047-783X-17-9

Published: 11 May 2012

Abstract

Background

In chronic hepatitis C virus (HCV) infection, liver tissue pathology and HCV genotype are important determinants of clinical and/or treatment-related outcome. Although consistent epidemiological and/or molecular-biological clues derived from different studies on single virus-host interactions are meanwhile published, the in vivo transcriptional responses and cellular pathways affected in >1 key aspects of the disease or treatment process are far from being understood.

Methods

Microarray analysis was performed in peripheral whole blood (PB) samples from 36 therapy-naïve HCV-infected patients with known liver histology. Linear regression analysis identified gene expression profiles significantly correlating (P < 0.015) with ≥1 out of 7 variables: sustained viral response (SVR), viral non-response (NR), end of treatment viral response (ETR), viral breakthrough (VB), HCV genotype (Gt. 1 vs. Gt. 2/3), stage of hepatic fibrosis [St. 0/1 vs. St. 2/3/4] and grade of hepatic inflammation (Gr. 0/1 vs. Gr. 2/3/4). Correlation values across all seven contrasts were considered for hierarchical clustering (HCL).

Results

A total of 1,697 genes showed ≥1 significant correlation results and genes involved in cell differentiation (183), immune response (53), and apoptosis (170) were leading fractions. HCL grouped the genes into six major clusters. Functional annotation analysis using DAVID (http://david.abcc.ncifcrf.gov webcite) revealed that expression profiles that best linked these variables were highly enriched in cytokine/chemokine activity (Fisher-exact P < 0.0001) and specific biological module-centric algorithms finally led our focus on four out of fifty-three immune response genes: SMAD family member 3 (SMAD3), interleukin 1 receptor accessory protein (IL1RAP), tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), and chemokine ‘C-C motif’ receptor 5 (CCR5). Of those, TNFRSF1A and CCR5 showed significant correlation with two out of seven variables based on microarray and/or quantitative real-time polymerase chain reaction (qRT-PCR) data.

Conclusion

We identified molecular targets of the innate and adaptive immune system and validated their transcriptional specificity in vivo suggesting significant involvement in two unique outcomes during HCV treatment.

Keywords:
HCV; Cytokines; Chemokines; Microarrays